

Package Types: 440219

PN's: CMPA2060035F1

# CMPA2060035F1

## 35 W, 2.0 - 6.0 GHz, GaN MMIC, Power Amplifier

#### Description

Wolfspeed's CMPA2060035F1 is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage 50-ohm matched amplifier, enabling very wide bandwidths to be achieved, in a small 0.5" square, screw-down package.

#### Features

- >30% typical power added efficiency
- 30 dB small signal gain
- 36 W typical P<sub>SAT</sub>
- Operation up to 28 V
- High breakdown voltage
- High temperature operation

#### Note:

Features represent typical performance across multiple frequencies under 25 °C operation. Please reference the performance charts for additional details.

### Typical Performance Over 2.0 - 6.0 GHz ( $T_c = 25 \text{ °C}$ )

| Parameter                             | 2.0 GHz | 3.0 GHz | 4.0 GHz | 5.0 GHz | 6.0 GHz | Units |
|---------------------------------------|---------|---------|---------|---------|---------|-------|
| Small Signal Gain <sup>1,2</sup>      | 30.0    | 29.4    | 30.4    | 32.0    | 27.5    | dB    |
| Output Power <sup>1,3</sup>           | 45.6    | 46.2    | 45.7    | 46.2    | 44.4    | dBm   |
| Power Gain <sup>1,3</sup>             | 23.6    | 24.2    | 23.7    | 24.2    | 22.4    | dB    |
| Power Added Efficiency <sup>1,3</sup> | 52      | 48      | 38      | 35      | 30      | %     |

Notes:

 $^{1}V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}.$ 

<sup>2</sup> Measured at  $P_{IN} = -20$  dBm.

 $^{\rm 3}$  Measured at  $P_{\rm IN}^{\rm in}$  = 22 dBm and CW.



#### Rev 0.3, SEPTEMBER 2023

#### Applications

- Civil and military pulsed radar amplifiers
- Test instrumentation
- Electronic warfare jamming

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300



### Absolute Maximum Ratings (Not Simultaneous) at 25 °C

| Parameter                    | Symbol            | Rating    | Units           | Conditions |
|------------------------------|-------------------|-----------|-----------------|------------|
| Drain-Source Voltage         | V <sub>DSS</sub>  | 84        | V <sub>DC</sub> | 25 °C      |
| Gate-Source Voltage          | V <sub>gs</sub>   | -10, +2   | V <sub>DC</sub> | 25 °C      |
| Storage Temperature          | Т <sub>stg</sub>  | -55, +150 | °C              |            |
| Maximum Forward Gate Current | Ι <sub>G</sub>    | 16.32     | mA              | 25 °C      |
| Maximum Drain Current        | I <sub>DMAX</sub> | 4.0       | А               |            |
| Soldering Temperature        | T <sub>s</sub>    | 260       | °C              |            |

# Electrical Characteristics (Frequency = 2.0 GHz to 6.0 GHz Unless Otherwise Stated; $T_c$ = 25 °C)

| Characteristics                      | Symbol              | Min.  | Тур.  | Max. | Units           | Conditions                                                                                                                 |
|--------------------------------------|---------------------|-------|-------|------|-----------------|----------------------------------------------------------------------------------------------------------------------------|
| DC Characteristics                   |                     |       |       |      |                 |                                                                                                                            |
| Gate Threshold Voltage               | V <sub>GS(TH)</sub> | -2.6  | -2.0  | -1.6 | V               | $V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 16.32 \text{ mA}$                                                          |
| Gate Quiescent Voltage               | V <sub>GS(Q)</sub>  | -     | -1.8  | -    | V <sub>DC</sub> | V <sub>DD</sub> = 28 V, I <sub>DQ</sub> = 1000 mA                                                                          |
| Saturated Drain Current <sup>1</sup> | I <sub>DS</sub>     | 16.32 | 19.58 | -    | A               | $V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$                                                                   |
| Drain-Source Breakdown Voltage       | V <sub>BD</sub>     | 84    | -     | -    | v               | $V_{\rm cs} = -8 \text{ V}, \text{ I}_{\rm D} = 16.32 \text{ mA}$                                                          |
| RF Characteristics                   |                     | '     | '     |      |                 |                                                                                                                            |
| Small Signal Gain                    | S21 <sub>1</sub>    | -     | 30.0  | -    | dB              | P <sub>IN</sub> = -20 dBm, Freq = 2.0 - 6.0 GHz                                                                            |
| Output Power <sup>2</sup>            | P <sub>OUT1</sub>   | -     | 45.6  | -    | dBm             | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 2.0 \text{ GHz}$                 |
| Output Power <sup>2</sup>            | P <sub>OUT2</sub>   | -     | 46.2  | -    | dBm             | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 3.0 \text{ GHz}$                 |
| Output Power <sup>2</sup>            | P <sub>OUT3</sub>   | -     | 45.7  | -    | dBm             | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{Freq} = 4.0 \text{ GHz}$                  |
| Output Power <sup>2</sup>            | P <sub>OUT4</sub>   | -     | 46.2  | -    | dBm             | $V_{DD} = 28 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{Freq} = 5.0 \text{ GHz}$                  |
| Output Power <sup>2</sup>            | P <sub>outs</sub>   | -     | 44.4  | -    | dBm             | $V_{DD} = 28 \text{ V}, I_{DO} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 6.0 \text{ GHz}$                 |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>1</sub>    | -     | 52    | -    | %               | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 2.0 \text{ GHz}$ |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>2</sub>    | -     | 48    | -    | %               | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 3.0 \text{ GHz}$ |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>3</sub>    | -     | 38    | -    | %               | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 4.0 \text{ GHz}$ |
| Power Added Efficiency <sup>2</sup>  | PAE <sub>4</sub>    | -     | 35    | -    | %               | $V_{DD} = 28 \text{ V}, I_{DO} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 5.0 \text{ GHz}$                 |
| Power Added Efficiency <sup>2</sup>  | PAE₅                | -     | 30    | -    | %               | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 6.0 \text{ GHz}$ |
| Power Gain                           | G <sub>P1</sub>     | -     | 23.6  | -    | dB              | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 2.0 \text{ GHz}$ |
| Power Gain                           | G <sub>P2</sub>     | -     | 24.2  | -    | dB              | $V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1000 \text{ mA}, \text{ P}_{IN} = 22 \text{ dBm}, \text{ Freq} = 3.0 \text{ GHz}$ |
| Power Gain                           | G <sub>P3</sub>     | -     | 23.7  | -    | dB              | $V_{DD} = 28 \text{ V}, I_{DO} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 4.0 \text{ GHz}$                 |
| Power Gain                           | G <sub>P4</sub>     | -     | 24.2  | -    | dB              | $V_{DD} = 28 \text{ V}, I_{DO} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 5.0 \text{ GHz}$                 |
| Power Gain                           | G <sub>P5</sub>     | -     | 22.4  | -    | dB              | $V_{DD} = 28 \text{ V}, I_{DO} = 1000 \text{ mA}, P_{IN} = 22 \text{ dBm}, \text{ Freq} = 6.0 \text{ GHz}$                 |
| Input Return Loss                    | S11                 | -     | -14   | -    | dB              | P <sub>IN</sub> = -20 dBm, 2.0 - 6.0 GHz                                                                                   |
| Output Return Loss                   | S22                 | -     | -14   | -    | dB              | P <sub>IN</sub> = -20 dBm, 2.0 - 6.0 GHz                                                                                   |
| Output Mismatch Stress               | VSWR                | -     | -     | 5:1  | Ψ               | No Damage at All Phase Angles                                                                                              |

Notes:

<sup>1</sup> Scaled from PCM data.

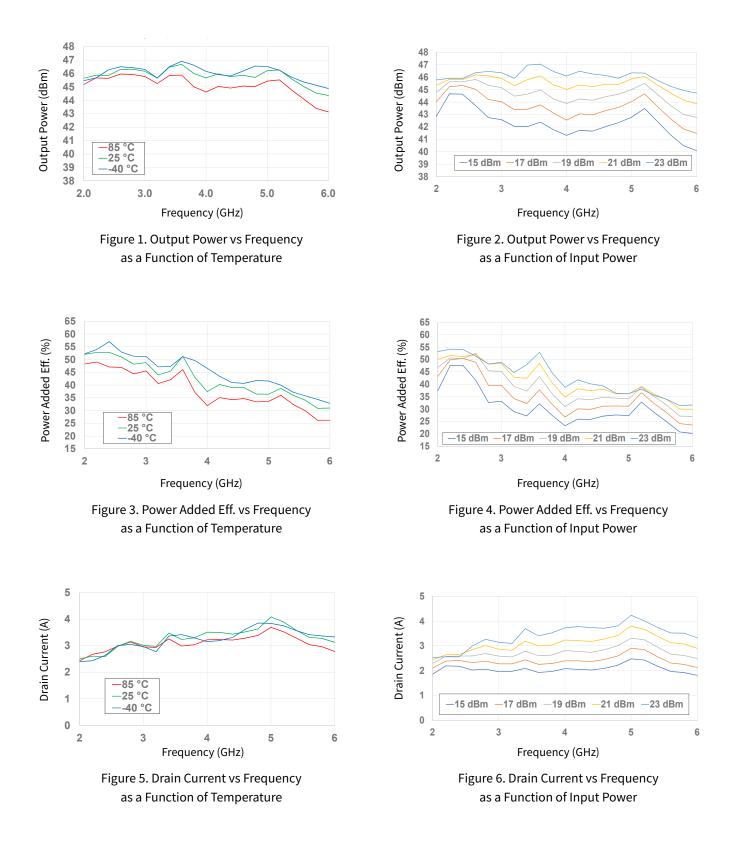
<sup>2</sup> Performance is based on production testing at a fixed input power. To see performance where the input power is optimized for either maximum output power or power added efficiency, see Figures 46 and 47.

#### Rev 0.3, SEPTEMBER 2023



### Thermal Characteristics

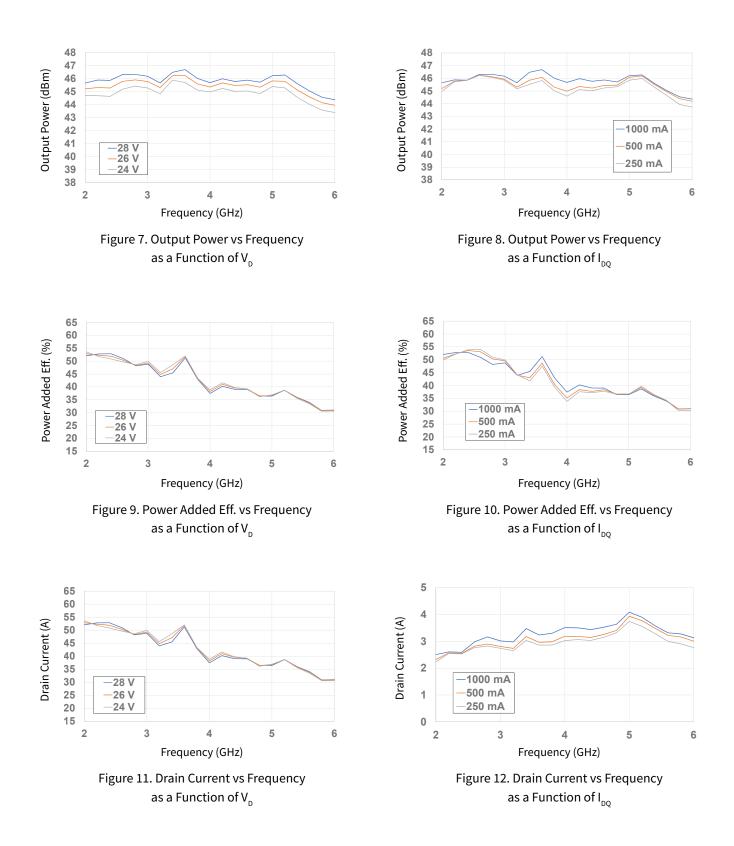
| Parameter                                                    | Symbol           | Rating | Units | Conditions |
|--------------------------------------------------------------|------------------|--------|-------|------------|
| Operating Junction Temperature                               | T,               | 225    | °C    |            |
| Thermal Resistance, Junction to Case (Packaged) <sup>1</sup> | R <sub>θJC</sub> | 1.5    | °C/W  | CW         |


Note:

 $^{\rm 1}$  For the CMPA2060035F1 at P  $_{\rm DISS}$  = 89 W.

Rev 0.3, SEPTEMBER 2023

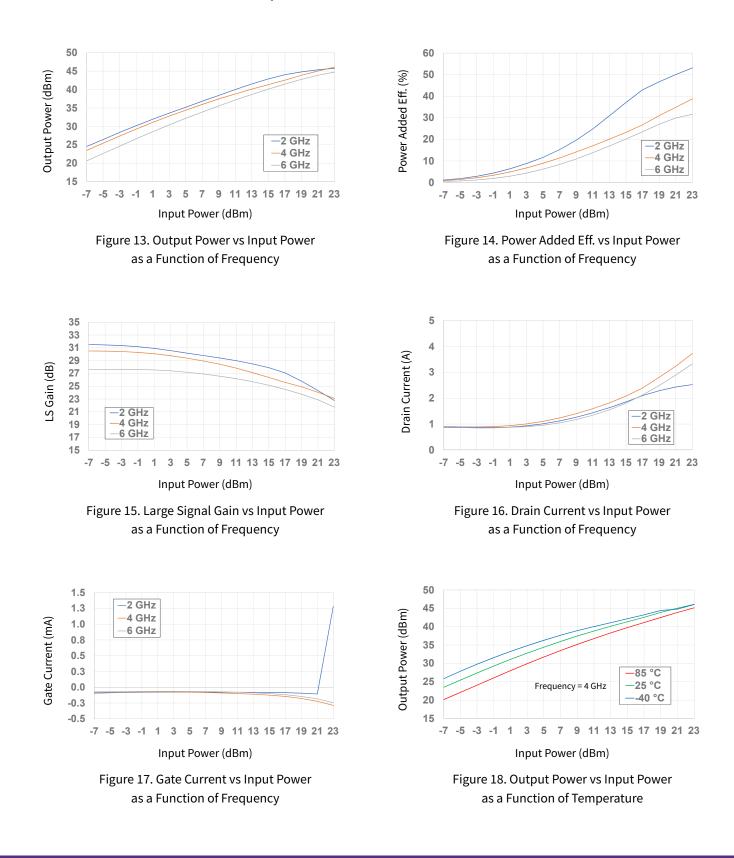



Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DQ} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



#### Rev 0.3, SEPTEMBER 2023

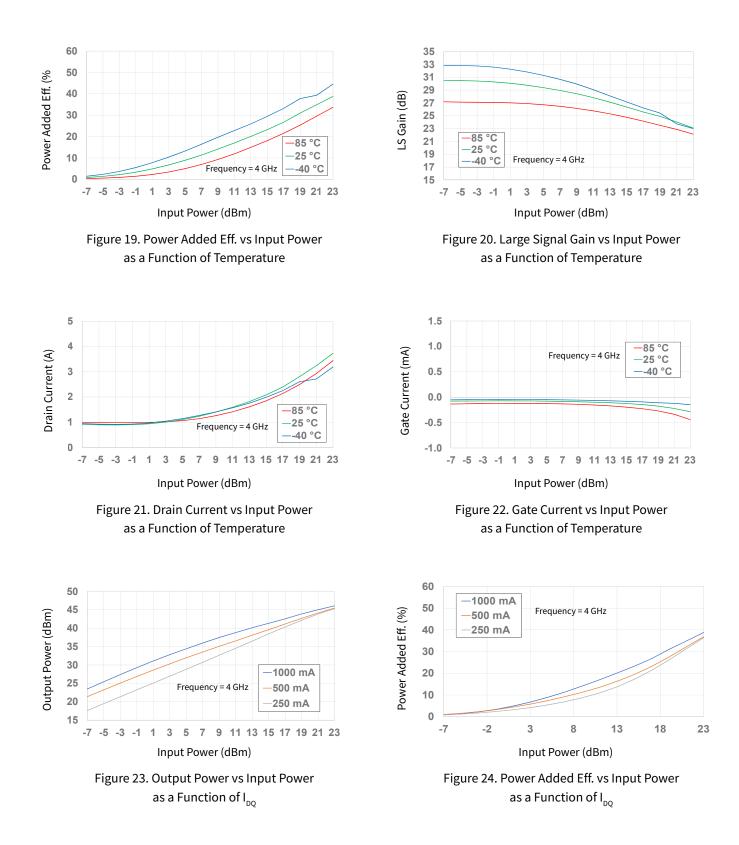



Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DQ} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



#### Rev 0.3, SEPTEMBER 2023

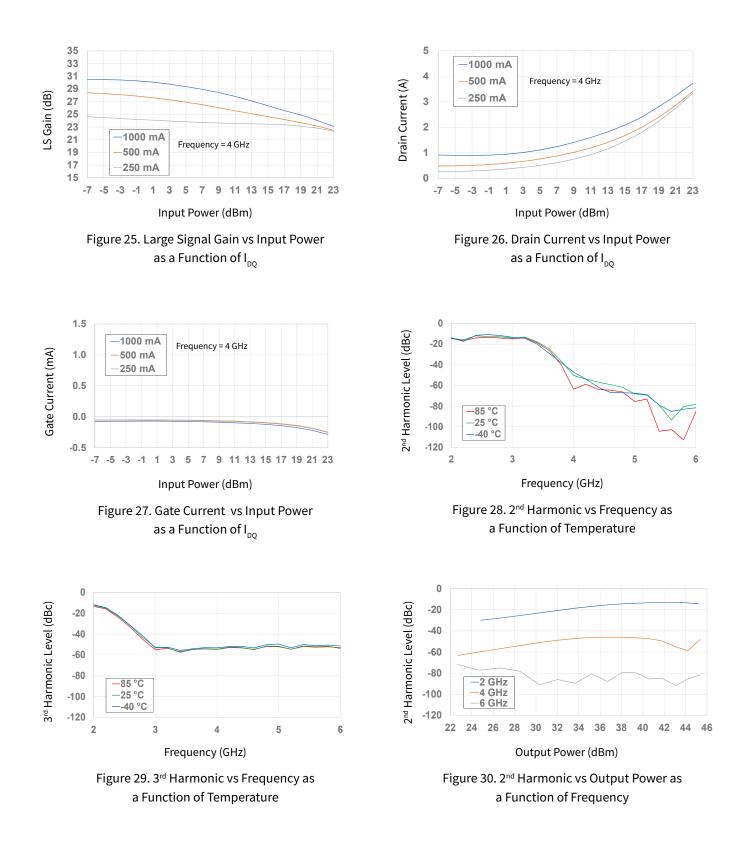



Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DO} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



#### Rev 0.3, SEPTEMBER 2023

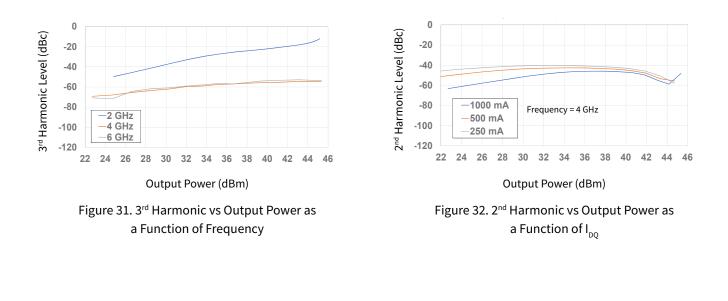



Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DQ} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



#### Rev 0.3, SEPTEMBER 2023




Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DQ} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



#### Rev 0.3, SEPTEMBER 2023



Test conditions unless otherwise noted:  $V_D = 28 V$ ,  $I_{DO} = 1000 mA$ , CW,  $P_{IN} = 22 dBm$ ,  $T_{BASE} = +25 °C$ 



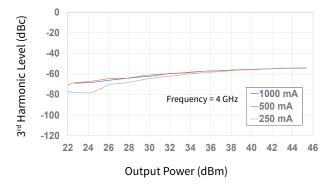
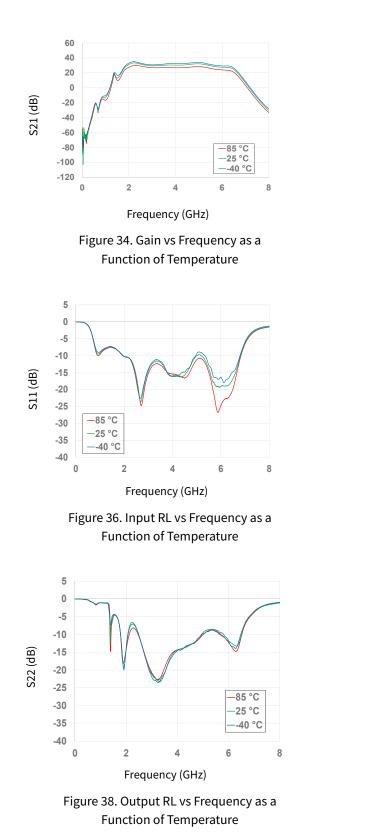




Figure 33.  $3^{rd}$  Harmonic vs Output Power as a Function of  $I_{po}$ 

Rev 0.3, SEPTEMBER 2023



Test conditions unless otherwise noted: V<sub>D</sub> = 28 V, I<sub>DQ</sub> = 1000 mA, P<sub>IN</sub> = -20 dBm, T<sub>BASE</sub> = +25 °C



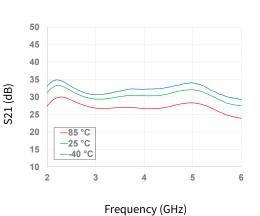



Figure 35. Gain vs Frequency as a Function of Temperature

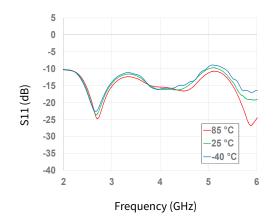



Figure 37. Input RL vs Frequency as a Function of Temperature

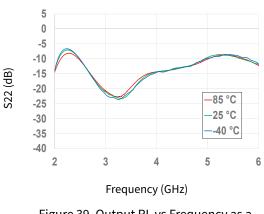
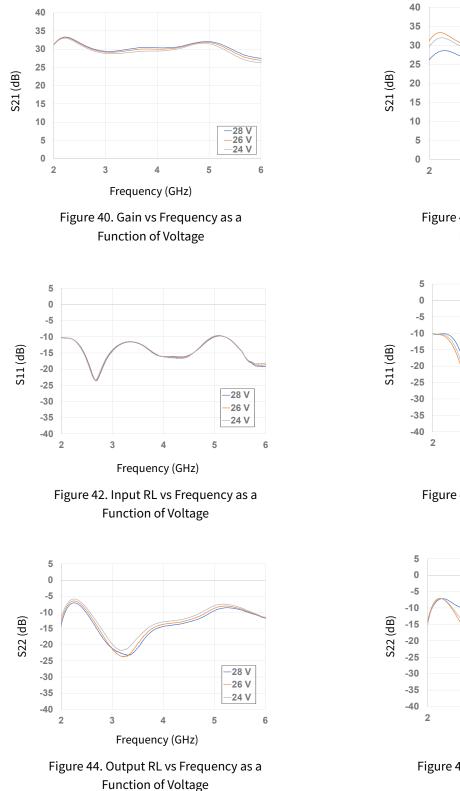
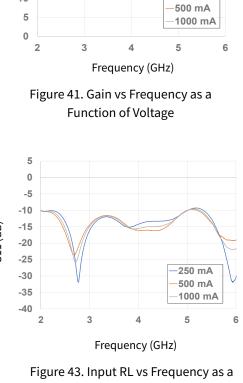
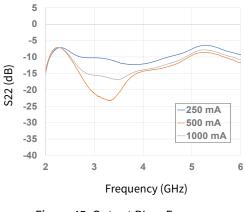


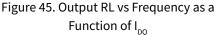

Figure 39. Output RL vs Frequency as a Function of Temperature


#### Rev 0.3, SEPTEMBER 2023



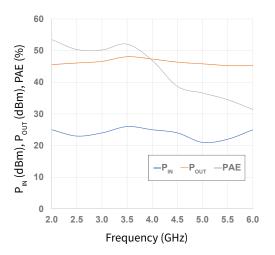

250 mA

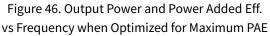

#### Typical Performance of the CMPA2060035F1


Test conditions unless otherwise noted: V<sub>D</sub> = 28 V, I<sub>DO</sub> = 1000 mA, P<sub>IN</sub> = -20 dBm, T<sub>BASE</sub> = +25 °C






Function of I<sub>DO</sub>








Test conditions unless otherwise noted: V<sub>D</sub> = 28 V, I<sub>DQ</sub> = 1000 mA, P<sub>IN</sub> = -20 dBm, T<sub>BASE</sub> = +25 °C





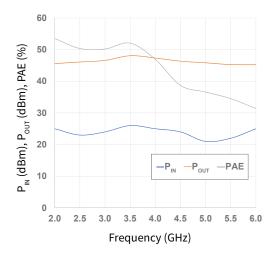
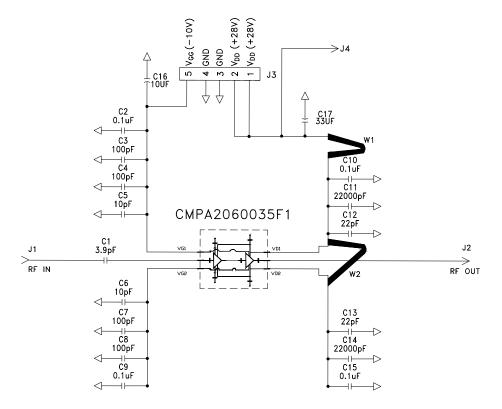
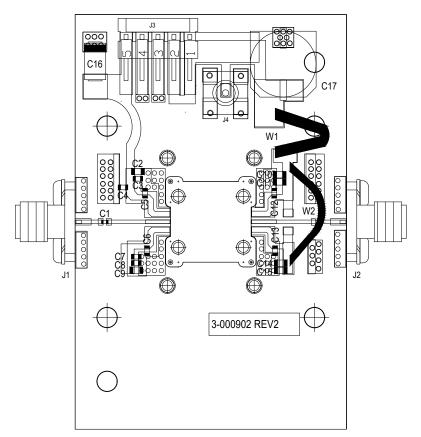





Figure 47. Output Power and Power Added Eff. vs Frequency when Optimized for Mamimum Output Power

#### CMPA2060035F1-AMP Evaluation Board Schematic



#### CMPA2060035F1-AMP Evaluation Board Outline



#### Rev 0.3, SEPTEMBER 2023

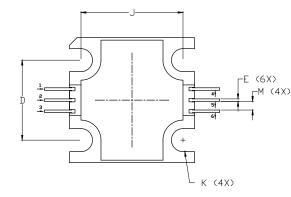
#### 4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

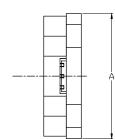
© 2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. The information in this document is subject to change without notice. 13

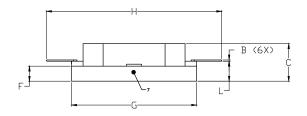


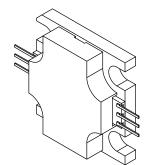
### CMPA2060035F1-AMP Evaluation Board Bill of Materials

| Designator       | esignator Description                                              |   |
|------------------|--------------------------------------------------------------------|---|
| C1               | CAP, 3.9 pF, +/-0.1 pF, 0402, ATC                                  | 1 |
| C11, C14         | CAP CER 22,000 PF 100 V 10% X7R 0805                               | 2 |
| C12, C13         | CAP, 22 pF,+/-5%, 0603, ATC                                        | 2 |
| C16              | CAP 10 UF 16 V TANTALUM, 2312                                      | 1 |
| C17              | CAP, 33 UF, 20%, G CASE                                            | 1 |
| C2, C9, C10, C15 | CAP CER 0.1 UF 100 V 10% X7R 0805                                  | 4 |
| C3, C4, C7, C8   | CAP, 100.0 pF, +/-5%, 0603, ATC                                    | 4 |
| C5, C6           | CAP, 10.0 pF, +/-5%, 0603, ATC                                     | 2 |
| J1, J2           | CONN, SMA, PANEL MOUNT JACK, FLANGE,<br>4-HOLE, BLUNT POST, 20 MIL | 2 |
| J3               | HEADER RT>PLZ .1CEN LK 5POS                                        | 1 |
| J4               | CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT,<br>50 OHM, Au PLATED     |   |
| W1, W2           | WIRE, BLACK, 22 AWG                                                | 2 |
|                  | TEST FIXTURE, 2-6 GHz, CMPA2060035F1                               | 1 |
|                  | PCB board 2.6" X 1.7", TACONIC RF 35, 0.01",<br>440219 Package     |   |
|                  | BASEPLATE, AL, 2.60 X 1.70 X 2.50                                  | 1 |
| Q1               | CMPA2060035F1: GaN, MMIC PA, 35 W, 2-6 GHz,<br>Flange              |   |

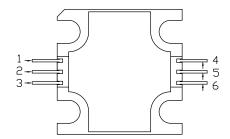

### Electrostatic Discharge (ESD) Classifications


| Parameter           | Symbol | Class         | Test Methodology    |
|---------------------|--------|---------------|---------------------|
| Human Body Model    | НВМ    | 1 B (≥ 500 V) | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | II (≥ 200 V)  | JEDEC JESD22 C101-C |


Rev 0.3, SEPTEMBER 2023




### Product Dimensions CMPA2060035F1 (Package 440219)



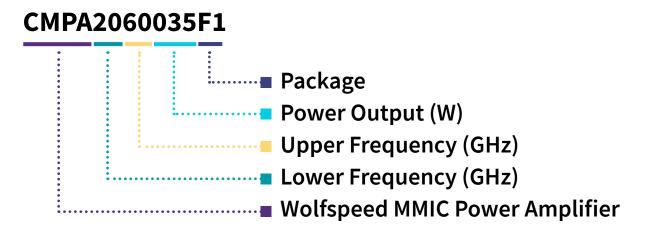







|     | INCHES |       | MILLIM | ETERS |
|-----|--------|-------|--------|-------|
| DIM | MIN    | MAX   | MIN    | MAX   |
| А   | 0.495  | 0.505 | 12.57  | 12.82 |
| В   | 0.003  | 0.005 | 0.076  | 0.127 |
| С   | 0.140  | 0.160 | 3.56   | 4.06  |
| D   | 0.315  | 0.325 | 8.00   | 8.25  |
| E   | 0.008  | 0.012 | 0.204  | 0.304 |
| F   | 0.055  | 0.065 | 1.40   | 1.65  |
| G   | 0.495  | 0.505 | 12.57  | 12.82 |
| Τ   | 0.695  | 0.705 | 17.65  | 17.91 |
| J   | 0.403  | 0.413 | 10.24  | 10.49 |
| к   | ø .092 |       | 2.3    | 34    |
| L   | 0.075  | 0.085 | 1.905  | 2.159 |
| М   | 0.032  | 0.040 | 0.82   | 1.02  |




NOT TO SCALE

| Pin | Desc.   |
|-----|---------|
| 1   | Gate 1  |
| 2   | RF_IN   |
| 3   | Gate 2  |
| 4   | Drain 1 |
| 5   | RF_OUT  |
| 6   | Drain 2 |

Rev 0.3, SEPTEMBER 2023



#### **Part Number System**



#### Table 1.

| Parameter       | Value  | Units |
|-----------------|--------|-------|
| Lower Frequency | 2.0    | GHz   |
| Upper Frequency | 6.0    | GHz   |
| Power Output    | 35     | W     |
| Package         | Flange | -     |

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

#### Table 2.

| Character Code | Code Value                       |
|----------------|----------------------------------|
| A              | 0                                |
| В              | 1                                |
| С              | 2                                |
| D              | 3                                |
| E              | 4                                |
| F              | 5                                |
| G              | 6                                |
| Н              | 7                                |
| J              | 8                                |
| к              | 9                                |
| Examples:      | 1 A = 10.0 GHz<br>2 H = 27.0 GHz |

Rev 0.3, SEPTEMBER 2023



### **Product Ordering Information**

| Order Number      | Description                        | Unit of Measure | Image          |
|-------------------|------------------------------------|-----------------|----------------|
| CMPA2060035F1     | GaN HEMT                           | Each            | CANRACISOUSSES |
| CMPA2060035F1-AMP | Test Board with GaN MMIC Installed | Each            |                |

Rev 0.3, SEPTEMBER 2023





#### For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

### Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2020-2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

#### Rev 0.3, SEPTEMBER 2023