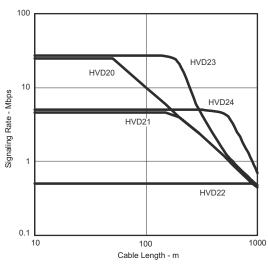


SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

Extended Common-Mode RS-485 Transceivers

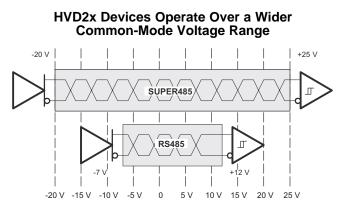

Check for Samples: SN65HVD20, SN65HVD21, SN65HVD22, SN65HVD23, SN65HVD24

FEATURES

- Common-Mode Voltage Range (–20 V to 25 V) More Than Doubles TIA/EIA-485 Requirement
- Receiver Equalization Extends Cable Length, Signaling Rate (HVD23, HVD24)
- Reduced Unit-Load for up to 256 Nodes
- Bus I/O Protection to Over 16-kV HBM
- Failsafe Receiver for Open-Circuit, Short-Circuit and Idle-Bus Conditions
- Low Standby Supply Current 1-µA Max
- More Than 100 mV Receiver Hysteresis

APPLICATIONS

- Long Cable Solutions
 - Factory Automation
 - Security Networks
 - Building HVAC
- Severe Electrical Environments
 - Electrical Power Inverters
 - Industrial Drives
 - Avionics


HVD2x APPLICATION SPACE

DESCRIPTION

The transceivers in the HVD2x family offer performance far exceeding typical RS-485 devices. In addition to meeting all requirements of the TIA/EIA-485-A standard, the HVD2x family operates over an extended range of common-mode voltage, and has features such as high ESD protection, wide receiver hysteresis, and failsafe operation. This family of devices is ideally suited for long-cable networks, and other applications where the environment is too harsh for ordinary transceivers.

These devices are designed for bidirectional data transmission on multipoint twisted-pair cables. Example applications are digital motor controllers, remote sensors and terminals, industrial process control, security stations, and environmental control systems.

These devices combine a 3-state differential driver and a differential receiver, which operate from a single 5-V power supply. The driver differential outputs and the receiver differential inputs are connected internally to form a differential bus port that offers minimum loading to the bus. This port features an extended common-mode voltage range making the device suitable for multipoint applications over long cable runs.

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS552E – DECEMBER 2002 – REVISED MAY 2010

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The 'HVD20 provides high signaling rate (up to 25 Mbps) for interconnecting networks of up to 64 nodes.

The 'HVD21 allows up to 256 connected nodes at moderate data rates (up to 5 Mbps). The driver output slew rate is controlled to provide reliable switching with shaped transitions which reduce high-frequency noise emissions.

The 'HVD22 has controlled driver output slew rate for low radiated noise in emission-sensitive applications and for improved signal quality with long stubs. Up to 256 'HVD22 nodes can be connected at signaling rates up to 500 kbps.

The 'HVD23 implements receiver equalization technology for improved jitter performance on differential bus applications with data rates up to 25 Mbps at cable lengths up to 160 meters.

The 'HVD24 implements receiver equalization technology for improved jitter performance on differential bus applications with data rates in the range of 1 Mbps to 10 Mbps at cable lengths up to 1000 meters.

The receivers also include a failsafe circuit that provides a high-level output within 250 microseconds after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted lines, or the absence of any active transmitters on the bus. This feature prevents noise from being received as valid data under these fault conditions. This feature may also be used for Wired-Or bus signaling.

The SN65HVD2X devices are characterized for operation over the temperature range of -40°C to 85°C.

PART NUMBERS	CABLE LENGTH AND SIGNALING RATE ⁽¹⁾	NODES	MARKING
SN65HVD20	Up to 50 m at 25 Mbps	Up to 64	D: VP20 P: 65HVD20
SN65HVD21	Up to 150 m at 5 Mbps (with slew rate limit)	Up to 256	D: VP21 P: 65HVD21
SN65HVD22	Up to1200 m at 500 kbps (with slew rate limit)	Up to 256	D: VP22 P: 65HVD22
SN65HVD23	Up to 160 m at 25 Mbps (with receiver equalization)	Up to 64	D: VP23 P: 65HVD23
SN65HVD24	Up to 500 m at 3 Mbps (with receiver equalization)	Up to 256	D: VP24 P: 65HVD24

PRODUCT SELECTION GUIDE

(1) Distance and signaling rate predictions based upon Belden 3105A cable and 15% eye pattern jitter.

AVAILABLE OPTIONS

PLASTIC THROUGH-HOLE P-PACKAGE (JEDEC MS-001)	PLASTIC SMALL-OUTLINE ⁽¹⁾ D-PACKAGE (JEDEC MS-012)
SN65HVD20P	SN65HVD20D
SN65HVD21P	SN65HVD21D
SN65HVD22P	SN65HVD22D
SN65HVD23P	SN65HVD23D
SN65HVD24P	SN65HVD24D

(1) Add R suffix for taped and reeled carriers.

Submit Documentation Feedback

2

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

HVD20, HVD21, HVD22				D22 HVD23, HVD24			
INPUT	ENABLE	OL	JTPUTS	INPUT	ENABLE	OUTPUTS	
D	DE	Α	В	D	DE	Α	В
Н	Н	Н	L	Н	Н	Н	L
L	Н	L	Н	L	Н	L	Н
Х	L	Z	Z	Х	L	Z	Z
Х	OPEN	Z	Z	Х	OPEN	Z	Z
OPEN	Н	Н	L	OPEN	Н	L	н

Table 1. DRIVER FUNCTION TABLE

H = high level, L= low level, X = don't care, Z = high impedance (off), ? = indeterminate

		TADLL						
DIFFERENTIAL INPUT $V_{ID} = (V_A - V_B)$								
0.2 V ≤ VID	L	н						
–0.2 V < VID < 0.2 V	L	H (see Note ⁽¹⁾)						
VID ≤ -0.2 V	L	L						
Х	Н	Z						
Х	OPEN	Z						
Open circuit	L	Н						
Short Circuit	L	Н						
Idle (terminated) bus L H								
H = high level, L= low level, Z = high ir	H = high level, L = low level, Z = high impedance (off)							

Table 2. RECEIVER FUNCTION TABLE

(1) If the differential input V_{ID} remains within the transition range for more than 250 µs, the integrated failsafe circuitry detects a bus fault, and set the receiver output to a high state. See Figure 15.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			SN65HVD2X
Supply voltage ⁽²⁾ , V _{CC}			–0.5 V to 7 V
Voltage at any bus I/O terminal			–27 V to 27 V
Voltage input, transient pulse, A a	and B, (through 100 Ω , see Figur	re 16)	-60 V to 60 V
Voltage input at any D, DE or $\overline{\text{RE}}$	terminal		-0.5 V to VCC+ 0.5 V
Receiver output current, I _O			-10 mA to 10 mA
	Liver on Dark Marial ⁽³⁾	A, B, GND	16 kV
Electrostatic	Human Body Model ⁽³⁾	All pins	5 kV
dischargeElectrostatic discharge	Charged-Device Model ⁽⁴⁾	All pins	1.5 kV
	Machine Model ⁽⁵⁾	All pins	200 V
Continuous total power dissipation	ו		See Thermal Table
Junction temperature, T _J			150°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. (2)

Tested in accordance with JEDEC Standard 22, Test Method A114-A. (3)

(4)Tested in accordance with JEDEC Standard 22, Test Method C101.

Tested in accordance with JEDEC Standard 22, Test Method A115-A (5)

Copyright © 2002–2010, Texas Instruments Incorporated

3

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

FEXAS

www.ti.com

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
Voltage at any bus I/O terminal	А, В	-20		25	V
High-level input voltage, V _{IH}	D, DE, RE	2		V_{CC}	V
Low-level input voltage, VIL	D, DE, RE	0		0.8	v
Differential input voltage, VID	A with respect to B	-25		25	V
Output output	Driver	-110		110	
Output current	Receiver	-8		8	mA
Operating free-air temperature, T_A	(1)	-40		85	°C
Junction temperature, T _J		-40		130	°C

(1) Maximum free-air temperature operation is allowed as long as the device recommended junction temperature is not exceeded.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions

	PARAMETER	TEST CONDIT	IONS	MIN	TYP ⁽¹)	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = −18 mA		-1.5	0.75		V
Vo	Open-circuit output voltage	A or B, No load		0		V_{CC}	V
		No load (open circuit)		3.3	4.2	V_{CC}	
V _{OD(SS)}	Steady-state differential output voltage	$R_L = 54 \Omega$, See Figure 1		1.8	2.5		V
		With common-mode loading, See Figure	e 2	1.8			
$\Delta V_{OD(SS)} $	Change in steady-state differential output voltage between logic states	See Figure 1 and Figure 3		-0.1		0.1	V
V _{OC(SS)}	Steady-state common-mode output voltage	See Figure 1		2.1	2.5	2.9	V
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage, $V_{OC(H)} - V_{OC(L)}$	See Figure 1 and Figure 4		-0.1		0.1	V
V _{OC(PP)}	Peak-to-peak common-mode output voltage, $V_{OC(MAX)} - V_{OC(MIN)}$	$R_L = 54 \Omega, C_L = 50 \text{ pF}, \text{ See Figure 1 and}$	d Figure 4	0.35			V
V _{OD(RING)}	Differential output voltage over and under shoot	$R_L = 54 \Omega, C_L = 50 \text{ pF}, \text{ See Figure 5}$				10%	
I _I	Input current	D, DE		-100		100	μA
		V - 7 V to 12 V Other input 0 V	HVD20, HVD23	-400		500	
	Output current with power off.	$V_0 < = -7 V$ to 12 V, Other input = 0 V	HVD21, HVD22, HVD24	-100		125	
I _O	High impedance state output current.		HVD20, HVD23	-800		1000	μA
		$V_0 < = -20$ V to 25 V, Other input = 0 V	HVD21, HVD22, HVD24	-200		250	
I _{OS}	Short-circuit output current	$V_0 = -20$ V to 25 V, See Figure 9	<u>+</u>	-250		250	mA
C _{OD}	Differential output capacitance					20	pF

(1) All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

4

Copyright © 2002–2010, Texas Instruments Incorporated

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions

	PARAMETER	TEST	CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Differential output propagation delay, low-to-high	R_= 54 Ω,	HVD20, HVD23	6	10	20	
	Differential output proposition dology high to low	$C_{L} = 50 \text{ pF},$	HVD21, HVD24	20	32	60	ns
t _{PHL}	Differential output propagation delay, high-to-low	See Figure 3	HVD22	160	280	500	
t _r	Differential output rise time	R ₁ = 54 Ω,	HVD20, HVD23	2	6	12	
		$C_{L} = 50 \text{ pF},$	HVD21, HVD24	20	40	60	ns
t _f	Differential output fall time	See Figure 3	HVD22	200	400	600	
t _{PZH}	Propagation delay time, high-impedance-to-high-level output		HVD20, HVD23			40	
	Descention delse time bisk level entrot to bisk immediate	RE at 0 V, See Figure 6	HVD21, HVD24			100	ns
t _{PHZ}	Propagation delay time, high-level output-to-high-impedance	ecc riguie e	HVD22			300	
	Descention delse time bisk immediance to bisk level estant		HVD20, HVD23			40	
t _{PZL}	Propagation delay time, high-impedance-to-high-level output	RE at 0 V, See Figure 7 HVD21, HVD24			100	ns	
t _{PLZ}	Propagation delay time, high-level output-to-high-impedance		HVD22			300	
t _{d(standby)}	Time from an active differential output to standby					2	μs
t _{d(wake)}	Wake-up time from standby to an active differential output	RE at V _{CC} , See	Figure 8			8	μs
		HVD20, HVD23				2	
t _{sk(p)}	Pulse skew t _{PLH} - t _{PHL}	HVD21, HVD24		6			ns
		HVD22				50	

(1) All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions

	PARAMETER	TEST	CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT(+)}	Positive-going differential input voltage threshold	0	$V_0 = 2.4 \text{ V}, I_0 = -8 \text{ mA}$		60	200	
V _{IT(-)}	Negative-going differential input voltage threshold	See Figure 10	See Figure 10 $V_0 = 0.4 \text{ V}, I_0 = 8 \text{ mA}$		-60		mV
V _{HYS}	Hysteresis voltage (V _{IT+} - V _{IT-})			100	130		mV
M	Positive-going differential input failsafe voltage	0	VCM = -7 V to 12 V	40	120	200	
V _{IT(F+)}	threshold	See Figure 15 $VCM = -20 V \text{ to } 25 V$		120	250	mV	
	Negative-going differential input failsafe voltage	0 5 45	VCM = -7 V to 12 V	-200	-120	-40	
V _{IT(F–)}	threshold	See Figure 15	VCM = -20 V to 25 V	-250	-120		mV
V _{IK}	Input clamp voltage	I _I = -18 mA	I ₁ = -18 mA				V
V _{OH}	High-level output voltage	V _{ID} = 200 mV, I _{OH} =	$V_{ID} = 200 \text{ mV}, I_{OH} = -8 \text{ mA}, \text{See Figure 11}$				V
V _{OL}	Low-level output voltage	$V_{ID} = -200 \text{ mV}, I_{OL}$	= 8 mA, See Figure 11			0.4	V
		$V_1 = -7$ to 12 V,	HVD20, HVD23	-400		500	
		Other input = 0 V	HVD21, HVD22, HVD24	-100		125	
I _{I(BUS)}	Bus input current (power on or power off)	$V_1 = -20$ to 25 V,	HVD20, HVD23	-800		1000	μΑ
		Other input = 0 V	HVD21, HVD22, HVD24	-200		250	
I _I	Input current	RE	RE			100	μΑ
5		HVD20, HVD23		24			10
RI	Input resistanceInput resistance	HVD21, HVD22, H	HVD21, HVD22, HVD24				kΩ
CID	Differential input capacitance	V _{ID} = 0.5 + 0.4 sine	e (2π × 1.5 × 10 ⁶ t)		20		pF

(1) All typical values are at 25°C.

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high level output		HVD20, HVD23		16	35	ns
t _{PHL}	Propagation delay time high-to low level output	See Figure 11	HVD21, HVD22, HVD24		25	50	
tr t _f	Receiver output rise time Receiver output fall time	See Figure 11			2	4	ns
t _{PZH}	Receiver output enable time to high level				90	120	ns
t _{PHZ}	Receiver output disable time from high level	See Figure 12			16	35	
t _{PZL}	Receiver output enable time to low level				90	120	ns
t _{PLZ}	Receiver output disable time from low level	See Figure 13			16	35	
t _{r(standby)}	Time from an active receiver output to standby					2	μs
t _{r(wake)}	Wake-up time from standby to an active receiver output	See Figure 14, DE at 0 V				8	
t _{sk(p)}	Pulse skew t _{PLH} – t _{PHL}					5	
t _{p(set)}	Delay time, bus fail to failsafe set	See Figure 15, pulse rate = 1 kHz			250	350	μs
t _{p(reset)}	Delay time, bus recovery to failsafe reset				50		ns

RECEIVER EQUALIZATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions

P.	ARAMETER	TEST COI	NDITIONS			MIN TYP ⁽²⁾	MAX	UNIT				
				0 m	HVD23	2		ns				
				100 m	HVD20	6		20				
				100 111	HVD23	3		ns				
			25 Mbps	150 m	HVD20	15						
				100	150 11	HVD23	4		ns			
				200 m	HVD20	27		ns				
					200 111	HVD23	8		115			
				200 m	HVD20	22		ns				
			200 111	HVD23	8		115					
	Deals to meals	Peudo-random NRZ code with a bit pattern length of 2 ¹⁶ – 1, Beldon 3105A cable, See Figure 27	10 Mbps	250 m	HVD20	34		ns				
(pp)	Peak-to-peak eye-pattern jitter			10 10003	230 111	HVD23	15		115			
	See Figure 27		See Figure 27	See Figure 27	See Figure 27	See Figure 27	See Figure 27		300 m	HVD20	49	
				500 11	HVD23	27		115				
			5 Mbps	500 m	HVD21	128		ns				
			5 Minhs	500 11	HVD24	18		115				
					HVD20	93						
			3 Mbps	500 m	HVD21	103		ns				
			o mppo	500 11	HVD23	90		115				
				HVD24	16							
			1 Mbpc	1000 m	HVD21	216		ns				
			1 Mbps	1000 11	HVD24	62		115				

(1) The HVD20 and HVD21 do not have receiver equalization, but are specified for comparison. (2) All typical values are at $V_{CC} = 5 V$, and temperature = $25^{\circ}C$.

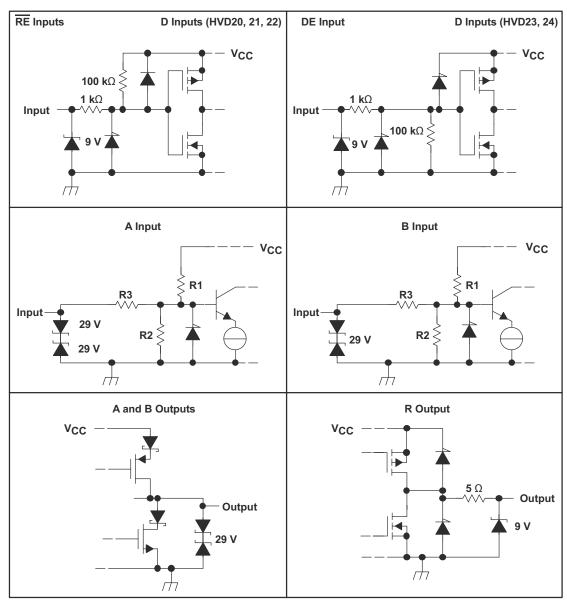
6

7

www.ti.com

SUPPLY CURRENT

over recommended operating conditions (unless otherwise noted)

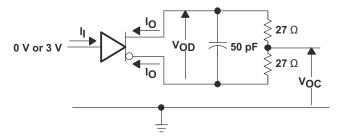

PAI	RAMETER	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
			HVD20		6	MAX 9 12 9 11 14 8 11 8 9 9 12	
	Driver en No load, V		HVD21		8	12	
			HVD22		6	9	
		Driver enabled (DE at V _{CC}), Receiver enabled (RE at 0 V), No load, $V_I = 0$ V or V _{CC}	HVD23		7	11	mA
			HVD24		10	14	
			HVD20		5	8	
			HVD21		7	11	
. 8	Supply	Driver enabled (DE at V_{CC}), Receiver disabled (RE at V_{CC}), No load, $V_1 = 0 V$ or V_{CC}	HVD22		5	8	
	current		HVD23		5	9	mA
			HVD24		8	12	
			HVD20		4	7	
			HVD21		5	8	
		Driver disabled (DE at 0 V), Receiver enabled (RE at 0 V), No load	HVD22		4	7	mA
			HVD23		4.5	9	
			HVD24		5.5	10	
		Driver disabled (DE at 0 V), Receiver disabled (RE at V_{CC}) D open	All HVD2x			1	μA

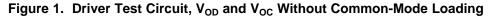
8

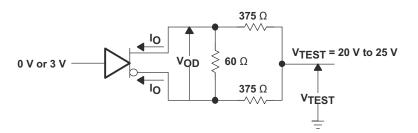
TEXAS INSTRUMENTS

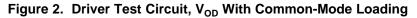
www.ti.com

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS


	R1/R2	R3
HVD20, 23	9 kΩ	45 kΩ
HVD21, 22, 24	36 kΩ	180 kΩ




SLLS552E - DECEMBER 2002 - REVISED MAY 2010


PARAMETER MEASUREMENT INFORMATION

NOTE: Test load capacitance includes probe and jig capacitance (unless otherwise specified). Signal generator characteristics: rise and fall time <6 ns, pulse rate 100 kHz, 50% duty cycle, Zo = 50 Ω (unless otherwise specified).

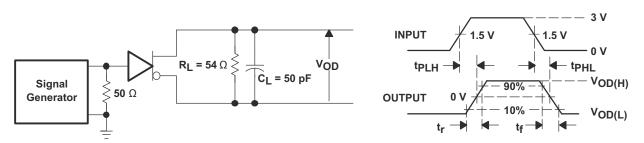


Figure 3. Driver Switching Test Circuit and Waveforms

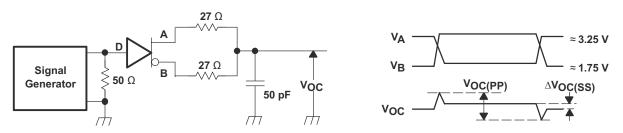
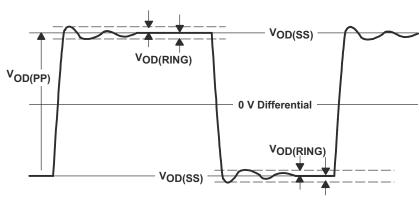
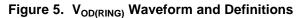
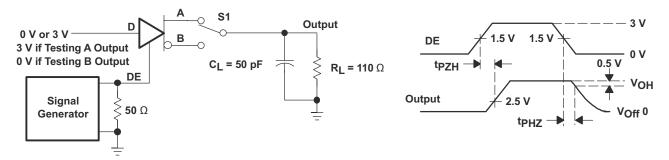



Figure 4. Driver V_{OC} Test Circuit and Waveforms


TEXAS INSTRUMENTS


www.ti.com

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE: $V_{OD(RING)}$ is measured at four points on the output waveform, corresponding to overshoot and undershoot from the $V_{OD(H)}$ and $V_{OD(L)}$ steady state values.

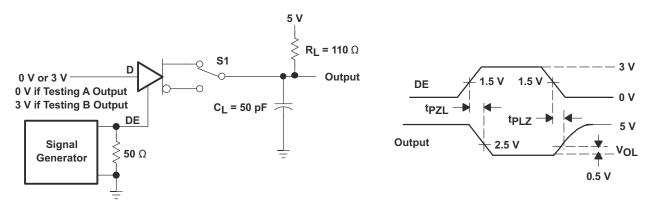


Figure 7. Driver Enable/Disable Test, Low Output

10

SN65HVD20, SN65HVD21 SN65HVD22, SN65HVD23, SN65HVD24

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

PARAMETER MEASUREMENT INFORMATION (continued)

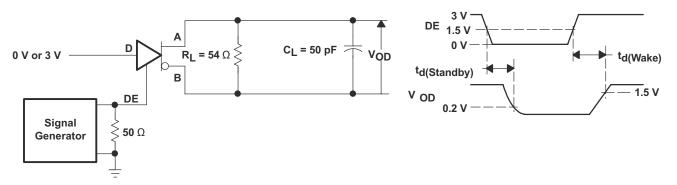


Figure 8. Driver Standby/Wake Test Circuit and Waveforms

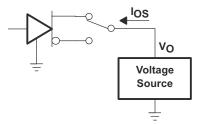


Figure 9. Driver Short-Circuit Test

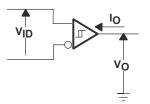


Figure 10. Receiver DC Parameter Definitions

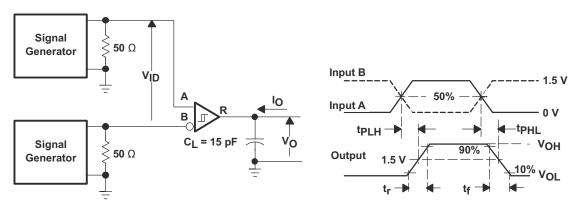


Figure 11. Receiver Switching Test Circuit and Waveforms

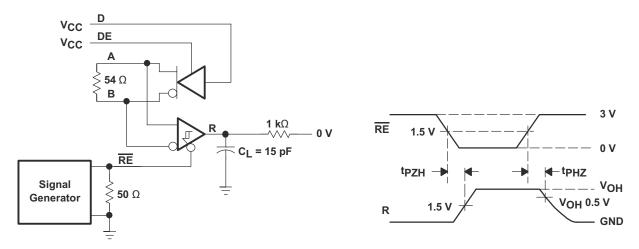


Figure 12. Receiver Enable Test Circuit and Waveforms, Data Output High

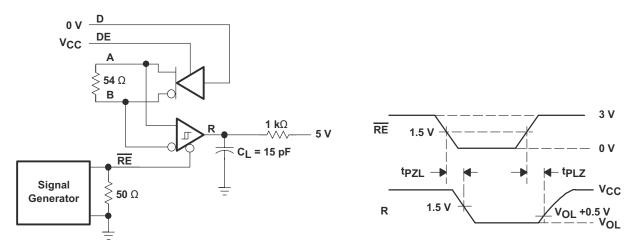


Figure 13. Receiver Enable Test Circuit and Waveforms, Data Output Low

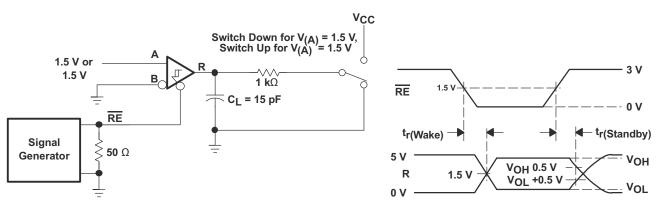
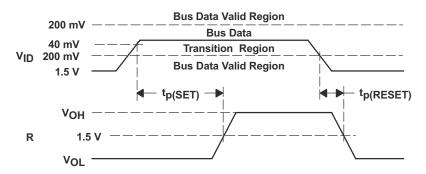



Figure 14. Receiver Standby and Wake Test Circuit and Waveforms

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

PARAMETER MEASUREMENT INFORMATION (continued)

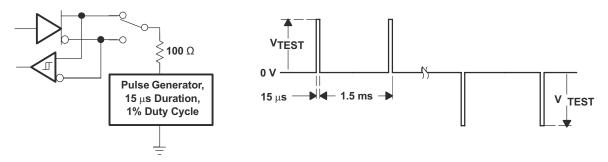
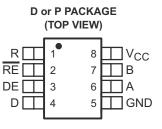
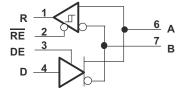




Figure 16. Test Circuit and Waveforms, Transient Overvoltage Test

PIN ASSIGNMENTS

LOGIC DIAGRAM

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

THERMAL INFORMATION

		SN65			
	THERMAL METRIC ⁽¹⁾	SOIC (D)	PDIP (P)	UNITS	
		8 PINS	PINS		
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	78.1	52.5		
θ _{JC(top)}	Junction-to-case(top) thermal resistance (3)	56.5	57.6		
θ_{JB}	Junction-to-board thermal resistance (4)	50.4	38.6	0000	
ΨJT	Junction-to-top characterization parameter ⁽⁵⁾	4.1	19.1	°C/W	
Ψјв	Junction-to-board characterization parameter ⁽⁶⁾	32.6	31.9]	
$\theta_{\text{JC(bottom)}}$	Junction-to-case(bottom) thermal resistance (7)	nA	n/A		

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

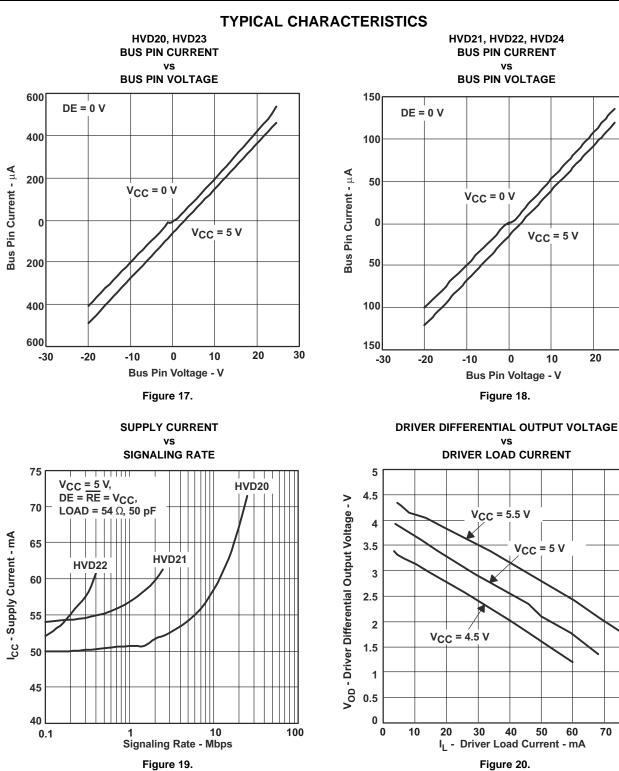
(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

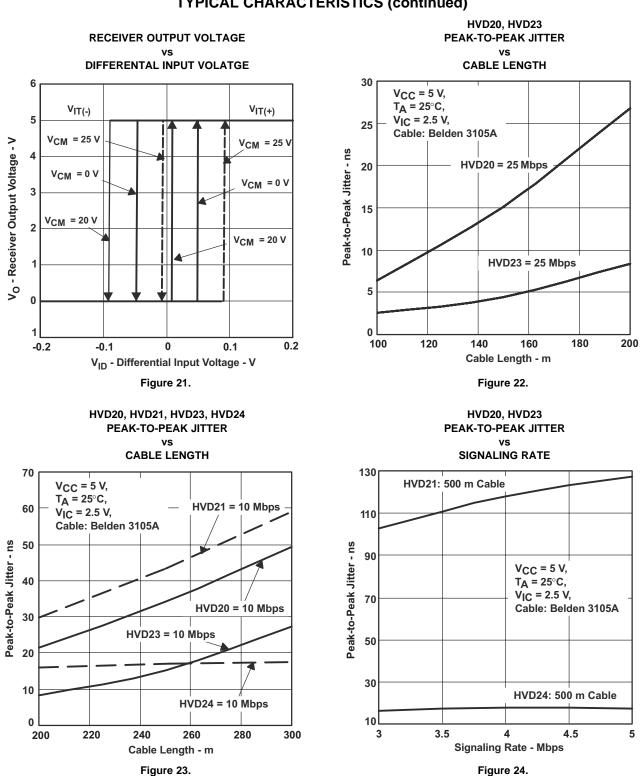
(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

POWER DISSIPATION

14


PARAMETERS		TEST CONDITIONS	VALUE	UNIT			
		HVD20	$\begin{array}{l} V_{CC}=5\ V,\ T_{J}=25^\circC,\\ R_{L}=54\ \Omega,\ C_{L}=50\ pF\ (driver),\\ C_{L}=15\ pF\ (receiver),\\ 50\%\ Duty\ cycle\ square\text{-wave}\ signal,\\ Driver\ and\ receiver\ enabled \end{array}$	25 Mbps	295		
		HVD21		5 Mbps	260		
	Typical	HVD22		500 kbps	233	mW	
		HVD23		25 Mbps	302		
Device Power		HVD24		5 Mbps	267		
dissipation, P _D		HVD20	$V_{CC} = 5.5 \text{ V}, \text{T}_{\text{J}} = 125^{\circ}\text{C},$ $R_{\text{L}} = 54 \Omega, \text{C}_{\text{L}} = 50 \text{pF},$ $C_{\text{L}} = 15 \text{pF} \text{ (receiver)},$ $50\% \text{Duty cycle square-wave signal},$ $ \text{Driver and receiver enabled}$	25 Mbps	408		
		HVD21			5 Mbps	342	
V	Worst case	HVD22		500 kbps	300	mW	
		HVD23		25 Mbps	417		
		HVD24		5 Mbps	352		
Thermal shut down junction	on temperature,	T _{SD}			170	°C	


SLLS552E - DECEMBER 2002 - REVISED MAY 2010

30

80

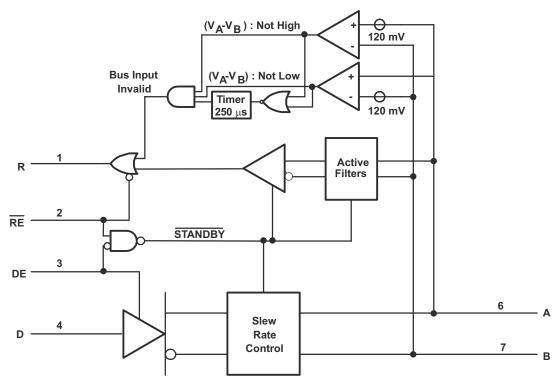
TYPICAL CHARACTERISTICS (continued)

APPLICATION INFORMATION

THEORY OF OPERATION

The HVD2x family of devices integrates a differential receiver and differential driver with additional features for improved performance in electrically-noisy, long-cable, or other fault-intolerant applications.

The receiver hysteresis (typically 130 mV) is much larger than found in typical RS-485 transceivers. This helps reject spurious noise signals which would otherwise cause false changes in the receiver output state.


Slew rate limiting on the driver outputs (SN65HVD21, 22, and 24) reduces the high-frequency content of signal edges. This decreases reflections from bus discontinuities, and allows longer stub lengths between nodes and the main bus line. Designers should consider the maximum signaling rate and cable length required for a specific application, and choose the transceiver best matching those requirements.

When DE is low, the differential driver is disabled, and the A and B outputs are in high-impedance states. When DE is high, the differential driver is enabled, and drives the A and B outputs according to the state of the D input.s

When \overline{RE} is high, the differential receiver output buffer is disabled, and the R output is in a high-impedance state. When \overline{RE} is low, the differential receiver is enabled, and the R output reflects the state of the differential bus inputs on the A and B pins.

If both the driver and receiver are disabled, (DE low and \overline{RE} high) then all nonessential circuitry, including auxiliary functions such as failsafe and receiver equalization is placed in a low-power standby state. This reduces power consumption to less than 5µW. When either enable input is asserted, the circuitry again becomes active.

In addition to the primary differential receiver, these devices incorporate a set of comparators and logic to implement an active receiver failsafe feature. These components determine whether the differential bus signal is valid. Whenever the differential signal is close to zero volts (neither high nor low), a timer initiates, If the differential input remains within the transition range for more than 250 microseconds, the timer expires and set the receiver output to the high state. If a valid bus input (high or low) is received at any time, the receiver output reflects the valid bus state, and the timer is reset.

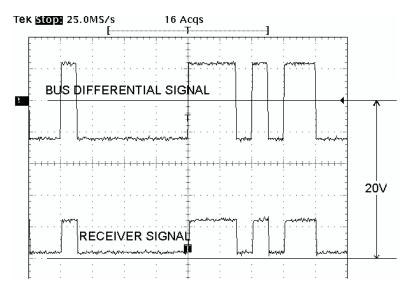


Figure 26. HVD22 Receiver Operation With 20-V Offset on Input Signal

$H(s) = k_0 \left[(1-k_1) + \frac{k_1 p_1}{(s+p_1)} \right] \left[(1-k_2) + \frac{k_2 p_2}{(s+p_2)} \right] \left[(1-k_3) + \frac{k_3 p_3}{(s+p_3)} \right]$	k0 (DC loss)	p1 (MHz)	k1	p2 (MHz)	k2	p3 (MHz)	k3
Similar to 160m of Belden 3105A	0.95	0.25	0.3	3.5	0.5	15	1
Similar to 250m of Belden 3105A	0.9	0.25	0.4	3.5	0.7	12	1
Similar to 500m of Belden 3105A	0.8	0.25	0.6	2.2	1	8	1
Similar to 1000m of Belden 3105A	0.6	0.3	1	3	1	6	1

Figure 27. Cable Attenuation Model for Jitter Measurements

INTEGRATED RECEIVER EQUALIZATION USING THE HVD23

Figure 28 illustrates the benefits of integrated receiver equalization as implemented in the HVD23 transceiver. In this test setup, a differential signal generator applied a signal voltage at one end of the cable, which was Belden 3105A twisted-pair shielded cable. The test signal was a pseudo-random bit stream (PRBS) of nonreturn-to-zero (NRZ) data. Channel 1 (top) shows the eye-pattern of the differential voltage at the receiver inputs (after the cable attenuation). Channel 2 (bottom) shows the output of the receiver.

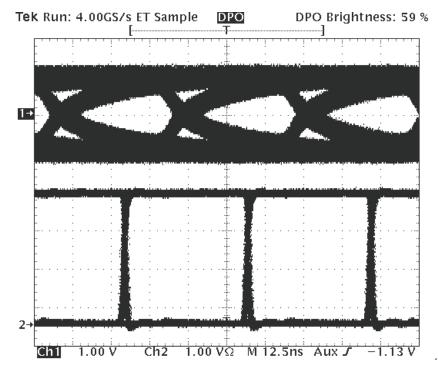


Figure 28. HVD23 Receiver Performance at 25 Mbps Over 150 Meter Cable

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

INTEGRATED RECEIVER EQUALIZATION USING THE HVD24

Figure 29 illustrates the benefits of integrated receiver equalization as implemented in the HVD24 transceiver. In this test setup, a differential signal generator applied a signal voltage at one end of the cable, which was Belden 3105A twisted-pair shielded cable. The test signal was a pseudo-random bit stream (PRBS) of nonreturn-to-zero (NRZ) data. Channel 1 (top) shows the eye-pattern of the bit stream. Channel 2 (middle) shows the eye-pattern of the differential voltage at the receiver inputs (after the cable attenuation). Channel 3 (bottom) shows the output of the receiver.

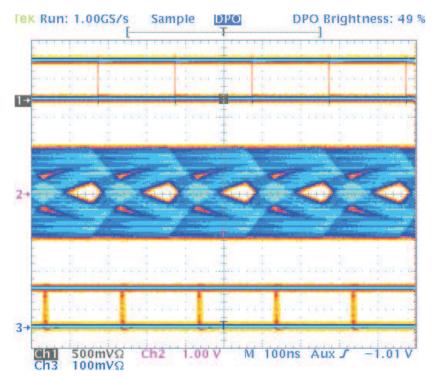


Figure 29. HVD24 Receiver Performance at 5 Mbps Over 500 Meter Cable

NOISE CONSIDERATIONS FOR EQUALIZED RECEIVERS

The simplest way of overcoming the effects of cable losses is to increase the sensitivity of the receiver. If the maximum attenuation of frequencies of interest is 20 dB, increasing the receiver gain by a factor of ten compensates for the cable. However, this means that both signal and noise are amplified. Therefore, the receiver with higher gain is more sensitive to noise and it is important to minimize differential noise coupling to the equalized receiver.

Differential noise is crated when conducted or radiated noise energy generates more voltage on one line of the differential pair than the other. For this to occur from conducted or electric far-field noise, the impedance to ground of the lines must differ.

For noise frequency out to 50 MHz, the input traces can be treated as a lumped capacitance if the receiver is approximately 10 inches or less from the connector. Therefore, matching impedance of the lines is accomplished by matching the lumped capacitance of each.

The primary factors that affect the capacitance of a trace are in length, thickness, width, dielectric material, distance from the signal return path, stray capacitance, and proximity to other conductors. It is difficult to match each of the variables for each line of the differential pair exactly, but a reasonable effort to do so keeps the lines balanced and less susceptible to differential noise coupling.

Another source of differential noise is from near-field coupling. In this situation, an assumption of equal noise-source impedance cannot be made as in the far-field. Familiarly known as crosstalk, more energy from a nearby signal is coupled to one line of the differential pair. Minimization of this differential noise is accomplished by keeping the signal pair close together and physical separation from high-voltage, high-current, or high-frequency signals.

In summary, follow these guidelines in board layout for keeping differential noise to a minimum.

- Keep the differential input traces short.
- Match the length, physical dimensions, and routing of each line of the pair.
- Keep the lines close together.
- Match components connected to each line.
- Separate the inputs from high-voltage, high-frequency, or high-current signals.

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

www.ti.com

TEST MODE DRIVER DISABLE

If the input signal to the D pin is such that:

- 1. the signal has signaling rate above 4 Mbps (for the 'HVD21 and 'HVD24)
- 2. the signal has signaling rate above 6 Mbps (for the 'HVD20 and 'HVD23)
- 3. the signal has average amplitude between 1.2 V and 1.6 V (1.4 V ±200 mV)
- 4. the average signal amplitude remains in this range for 100 µsec or longer,

then the driver may activate a test-mode during which the driver outputs are temporarily disabled. This can cause loss of transmission of data during the period that the device is in the test-mode. The driver will be re-enabled and resume normal operation whenever the above conditions are not true. The device is not damaged by this test mode.

Although rare, there are combinations of specific voltage levels and input data patterns within the operating conditions of the HVD2x family which may lead to a temporary state where the driver outputs are disabled for a period of time.

Observations:

- 1. The conditions for inadvertently entering the test mode are dependent on the levels, duration, and duty cycle of the logic signal input to the D pin. Operating input levels are specified as greater than 2 V for a logic HIGH input, and less than 0.8V for a logic LOW input. Therefore, a valid steady-state logic input will not cause the device to activate the test mode
- 2. Only input signals with frequency content above 2 MHz (4 Mbps) have a possibility of activating the test mode. Therefore, this issue should not affect the normal operation of the HVD22 (500 kbps).
- 3. For operating signaling rates of 4 Mbps (or above), the conditions stated above must remain true over a period of: 4 Mbps x 100 µsec = 400 bits. Therefore, a normal short message will not inadvertently activate the test model
- 4. One example of an input signal which may cause the test mode to activate is a clock signal with frequency 3 MHz and 50% duty cycle (symmetric HIGH and LOW half-cycles) with logic HIGH levels of 2.4 V and logic LOW levels of 0.4 V. This signal applied to the D pin as a driver input would meet the criteria listed above, and might cause the test-mode to activate, which would disable the driver. Note that this example situation might occur if the clock signal were generated by a microcontroller or logic chip with a 2.7 V-supply.

SN65HVD20, SN65HVD21 SN65HVD22, SN65HVD23, SN65HVD24

SLLS552E - DECEMBER 2002 - REVISED MAY 2010

REVISION HISTORY

Changes from Original (December 2002) to Revision A	Page
Changed t _{PZH} , t _{PHZ} , t _{PZL} , and t _{PLZ} - From a MAX value of 120 To include TYP and MAX values for a (RECEIVER SWITCHING CHARACTERISTICS table)	
Changes from Revision A (March 2003) to Revision B	Page
Added V _{IK} TYP Value of 0.75V (DRIVER ELECTRICAL CHARACTERISTICS table)	
• Deleted $V_{IT(F+)}$ - VCM = -20 V to 25 V MIN value (RECEIVER ELECTRICAL CHARACTERISTICS	table) 5
Added RECEIVER EQUALIZATION CHARACTERISTICS table	6
Changed A Input circuit in the EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS	
Added Figure 22, Figure 23, and Figure 24 to the TYPICAL CHARACTERISTICS	15
Changed the INTEGRATED RECEIVER EQUALIZATION USING THE HVD23 section	19
Changed the INTEGRATED RECEIVER EQUALIZATION USING THE HVD24 section	
Changes from Revision B (June 2003) to Revision C	Page
Added the THERMAL CHARACTERISTICS table	14
Added the THEORY OF OPERATION section	17
Added the NOISE CONSIDERATIONS FOR EQUALIZED RECEIVERS section	
Changes from Revision C (September 2003) to Revision D	Page

•	Added Conditions note to the ABSOLUTE MAXIMUM RATINGS table "over operating free-air temperature range (unless otherwise noted)"	. 3
•	Deleted Storage temperature, T _{stg} from the ABSOLUTE MAXIMUM RATINGS table	. 3
•	Added Receiver output current, Io to the ABSOLUTE MAXIMUM RATINGS table	. 3

Changes from Revision D (April 2005) to Revision E

•	Changed I _O - Added test condition and values per device number (DRIVER ELECTRICAL CHARACTERISTICS table)	. 4
•	Replaced the Dissipation Rating table with the THERMAL INFORMATION table	
•	Changed the THERMAL CHARACTERISTICS table to POWER DISSIPATION table	14
•	Added the TEST MODE DRIVER DISABLE section	22

Page

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated